超快速液相色谱对纺织品中 24 种禁用偶氮染料的检测

摘 要: 本文使用岛津Nexera XR液相色谱仪建立了一种检测纺织品中24种禁用偶氮染料的方法。利用岛津Nexera XR液相色谱仪快速分离能力分离了24种禁用偶氮染料,缩短了色谱检测的时间,提高了分析效率。并利用该方法检测了实际样品。该方法的线性、重现性和选择性佳。

关键词: 岛津Nexera XR液相色谱仪 纺织品 禁用偶氮染料 前言

随着人们生活水平的改善,对服装的安全性越来越重视。目前,在国内服装市场强制实行的国家标准 GB 18401-2003《国家纺织产品基本安全技术规范》和 GB/T 18885-2009《生态纺织品技术要求》中,对甲醛、pH 值、色牢度、异味和可分解芳香胺染料五项指标都做了强制性的要求。由于违禁的偶氮染料(或可分解芳香胺染料)会分解出致癌物质,严重影响身体健康;而且该类染料通常无色无味,不能通过人体的感觉器官感知,甚至不能通过洗涤等方式来减轻其危害,所以国家标准 GB 18401-2003 和 GB/T 18885-2009 都严格规定,禁止使用这些有致癌作用的偶氮染料。根据国标 GB/T 17592-2006 对纺织品禁用偶氮染料的检测方法,要实现对 24 种禁用的偶氮染料的分析,每个样品的色谱分析周期需要 90 分钟,如果面对大量待检样品时,严重影响检测效率。

岛津 Nexera XR 液相色谱仪可以以更快的速度和更高的质量完成以往 HPLC 的工作,为用户节省宝贵的时间和日常溶剂消耗,从而获得最大的投资回报。Nexera XR 液相色谱仪的高分离度可以帮助用户从容面对复杂组份(如天然产物或中草药等)分离的挑战; Nexera XR液相色谱仪的高灵敏度帮助用户检测痕量的目标化合物; Nexera XR 液相色谱仪快速分离能力使用户轻松分析大量样品,实现高通量分析。

本文采用岛津 Nexera XR 液相色谱仪建立了一种检测纺织品中 24 种禁用偶氮染料的方法。经过方法学的考察,该方法的线性、重现性和选择性均良好。

1 实验部分

1.1 仪器和试剂

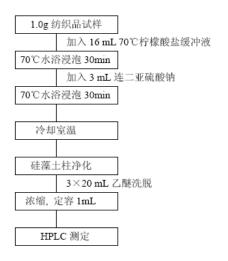
仪器: Shimadzu Nexera XR 和二极管阵列检测器。具体配置为:输液泵 LC-20AD_{XR}×2,在线脱气机 DGU-20A₅,自动进样器 SIL-20AC_{XR},柱温箱 CTO-20AC,控制器 CBM-20A,二极管阵列检测器 SPD-M20A(配半微量池),工作站 LabSolutions。

试剂: HPLC 级乙腈,甲醇; 纯水, Milli-Q 超纯水仪制备得到; 所有试剂和样品需用 0.45 μm 以下滤膜过滤。

1.2 色谱条件

色谱条件:

色谱柱: Shimadzu Shim-pack XR-ODS II, 3.0 mm I.D.×75 mm L., 2.2 μm, Shimadzu Shim-pack XR-ODS, 3.0 mm I.D.×50 mm L., 2.2 μm, 两者串联使用;


流动相: A 相一纯水, B 相一HPLC 级甲醇; 流速: 0.5 mL/min; 柱温: 70 ℃; 进样量: 1 μL; PDA 检测器波长范围: 220 nm-320 nm。定量波长: 240 nm, 280 nm。 梯度洗脱程序见表 1:

1 N/200/0011 4/11/1				
时间(min)	流动相 B (%)			
0.01	95			
11.00	68			
13.00	68			
13.01	80			
17.00	80			
27.00	20			
30.00	20			
30.01	95			
33.00	95			

表 1 梯度洗脱时间程序表

2 样品的制备

参照国标 GB/T 17592-2006 的样品前处理方法处理样品,得到四份未知实际样品(分别记录为 A、B、C、D)。

3 结果与讨论

3.1 24 种偶氮染料标准品的色谱图

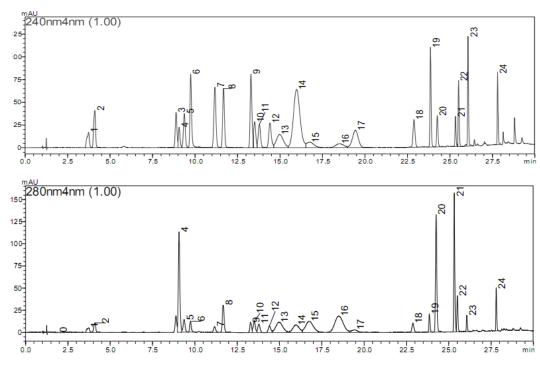
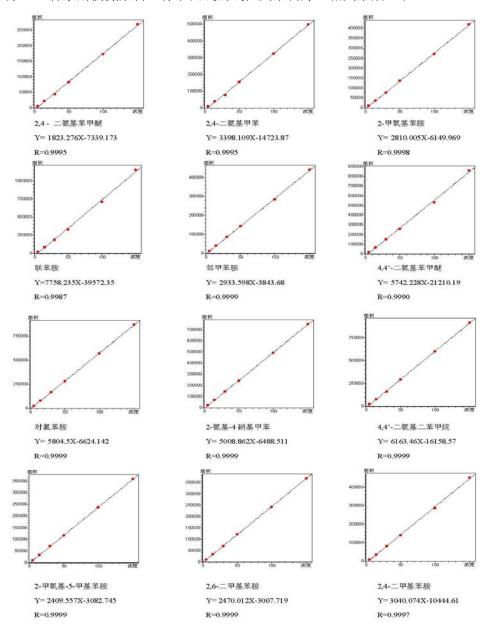


图1 24种偶氮染料标准品的色谱图(提取波长: 240 nm和280 nm)

经过对比保留时间和光谱图等信息,得到24种禁用偶氮染料的信息如表2:

表 2 24 种禁用偶氮染料保留时间对应表


序号	化合物名称	保留时间(min)
1	2,4-二氨基苯甲醚	3.745
2	2,4-二氨基甲苯	4.118
3	2-甲氧基苯胺	8.906
4	联苯胺	9.091
5	邻甲苯胺	9.387
6	4,4'-二氨基苯甲醚	9.773
7	对氯苯胺	11.193
8	2-氨基-4 硝基甲苯	11.706
9	4,4'-二氨基二苯甲烷	13.343
10	2-甲氧基-5-甲基苯胺	13.554
11	2,6-二甲基苯胺	13.832
12	2,4-二甲基苯胺	14.461
13	4,4'-二氨基二苯硫醚	15.238
14	2-萘胺	16.13
15	3,3'-二甲氧基联苯胺	17.043
16	3,3'-二甲基联苯胺	18.78
17	4-氯邻甲苯胺	19.54
18	2,4,5-三甲基苯胺	22.913
19	3,3'-二甲基 4, 4'-二氨基二苯甲烷	23.868

20	4-氨基联苯	24.273
21	3,3'-二氯联苯胺	25.329
22	4-氨基偶氮苯	25.515
23	4,4'-次甲基-双(2-氯苯胺)	26.067
24	邻氨基偶氮苯	27.809

经过对比不同截取波长的提取色谱图,对于联苯胺、3,3'-二氯联苯胺、4-氨基联苯三种物质,采用 280 nm 波长进行定量;其他物质采用 240 nm 进行定量。

3.2 标准曲线

24 种偶氮芳香胺混合标准溶液用乙腈配制成一标准储备液,依此标准储备液配制出系列浓度分别 5、15、30、50、100、150 mg/L。24 种禁用偶氮染料标准曲线如下所示。结果表明,24 种禁用偶氮染料,标准曲线的线性关系良好,相关系数 R 在 0.9973~1.0000。

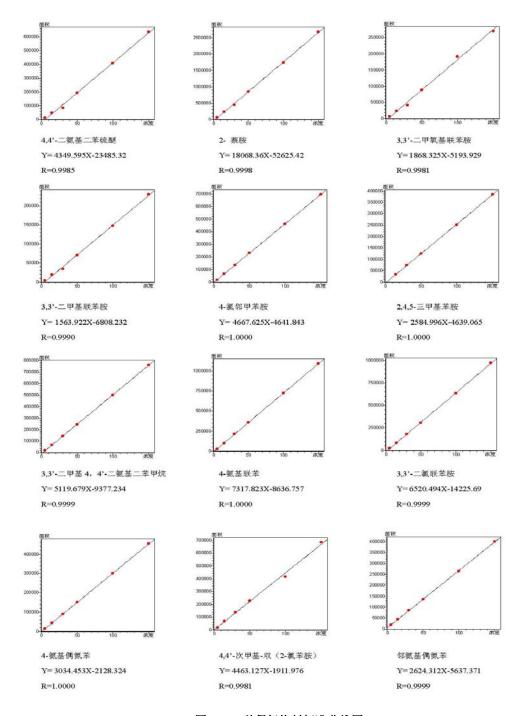


图 2 24 种偶氮染料标准曲线图

3.3 重复性测试

24 种禁用偶氮染料重复性结果见表 3、表 4。

表 3 24 种禁用偶氮染料的峰面积重复性(n=5)

浓度(mg/L) 化合物名称	5	50	150
2,4-二氨基苯甲醚	6.37%	0.41%	0.39%
2,4-二氨基甲苯	5.62%	0.31%	0.17%

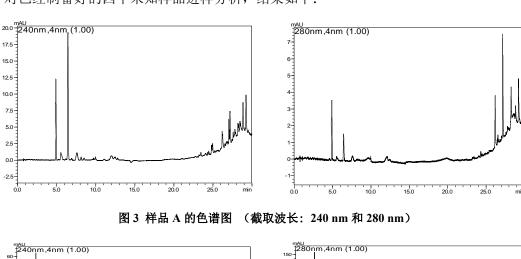
2-甲氧基苯胺	2.79%	0.22%	0.28%
联苯胺	1.46%	0.51%	0.79%
邻甲苯胺	3.32%	0.41%	0.20%
4,4'-二氨基苯甲醚	4.01%	0.17%	0.28%
对氯苯胺	3.70%	0.19%	0.35%
2-氨基-4 硝基甲苯	3.70%	0.21%	0.76%
4,4'-二氨基二苯甲烷	4.19%	1.17%	1.13%
2-甲氧基-5-甲基苯胺	3.56%	1.95%	1.38%
2,6-二甲基苯胺	2.76%	0.93%	0.86%
2,4-二甲基苯胺	4.44%	0.74%	0.88%
4,4'-二氨基二苯硫醚	6.37%	0.28%	0.95%
2-萘胺	4.19%	0.20%	0.09%
3,3'-二甲氧基联苯胺	6.94%	0.78%	0.71%
3,3'-二甲基联苯胺	2.29%	0.68%	0.57%
4-氯邻甲苯胺	5.24%	0.42%	0.03%
2,4,5-三甲基苯胺	4.44%	1.58%	0.08%
3,3'-二甲基 4,4'-二氨基二苯甲烷	3.98%	0.31%	0.06%
4-氨基联苯	3.98%	0.33%	0.21%
3,3'-二氯联苯胺	3.64%	0.37%	0.03%
4-氨基偶氮苯	5.54%	0.58%	0.25%
4,4'-次甲基-双(2-氯苯胺)	5.91%	1.90%	1.07%
邻氨基偶氮苯	3.55%	0.94%	0.59%

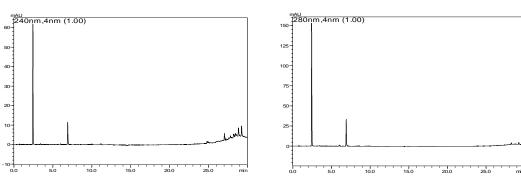
表 4 24 种禁用偶氮染料的保留时间重复性(n=5)

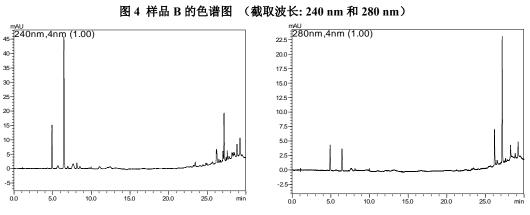
化合物名称	保留时间的 RSD%	
2,4-二氨基苯甲醚	0.24%	
2,4-二氨基甲苯	0.24%	
2-甲氧基苯胺	0.15%	
联苯胺	0.14%	
邻甲苯胺	0.13%	
4,4'-二氨基苯甲醚	0.12%	
对氯苯胺	0.09%	
2-氨基-4 硝基甲苯	0.08%	
4,4'-二氨基二苯甲烷	0.05%	
2-甲氧基-5-甲基苯胺	0.06%	
2,6-二甲基苯胺	0.05%	
2,4-二甲基苯胺	0.04%	
4,4'-二氨基二苯硫醚	0.26%	
2-萘胺	0.15%	

3,3'-二甲氧基联苯胺	0.25%
3,3'-二甲基联苯胺	0.31%
4-氯邻甲苯胺	0.13%
2,4,5-三甲基苯胺	0.04%
3,3'-二甲基 4,4'-二氨基二苯甲烷	0.02%
4-氨基联苯	0.02%
3,3'-二氯联苯胺	0.03%
4-氨基偶氮苯	0.04%
4,4'-次甲基-双(2-氯苯胺)	0.05%
邻氨基偶氮苯	0.05%

3.4 检出限和定量限


24 种禁用偶氮染料检出限(LOD)和定量限(LOQ)见表 5。结果表明,24 种禁用偶氮染料中只有 3,3'-二甲氧基联苯胺和 3,3'-二甲基联苯胺的检出限大于 2 mg/L,其他物质的检出限均小于 2 mg/L。


表 5 24 种禁用偶氮染料的 LOD 和 LOQ


序号	化合物名称	LOD (mg/L)	LOQ (mg/L)
1	2,4-二氨基苯甲醚	0.69	2.29
2	2,4-二氨基甲苯	0.38	1.26
3	2-甲氧基苯胺	0.60	2.02
4	联苯胺	0.33	1.09
5	邻甲苯胺	0.60	1.99
6	4,4'-二氨基苯甲醚	0.31	1.03
7	对氯苯胺	0.33	1.11
8	2-氨基-4 硝基甲苯	0.35	1.16
9	4,4'-二氨基二苯甲烷	0.30	1.00
10	2-甲氧基-5-甲基苯胺	0.84	2.80
11	2,6-二甲基苯胺	0.88	2.94
12	2,4-二甲基苯胺	0.94	3.15
13	4,4'-二氨基二苯硫醚	1.80	6.00
14	2-萘胺	0.37	1.24
15	3,3'-二甲氧基联苯胺	4.02	13.39
16	3,3'-二甲基联苯胺	5.20	17.35
17	4-氯邻甲苯胺	1.16	3.85
18	2,4,5-三甲基苯胺	0.79	2.63
19	3,3'-二甲基 4, 4'-二氨基二苯甲烷	0.22	0.75
20	4-氨基联苯	0.24	0.79
21	3,3'-二氯联苯胺	0.23	0.78
22	4-氨基偶氮苯	0.32	1.06
23	4,4'-次甲基-双(2-氯苯胺)	0.19	0.63
24	邻氨基偶氮苯	0.29	0.96

3.5 样品测定结果

对已经制备好的四个未知样品进样分析,结果如下:

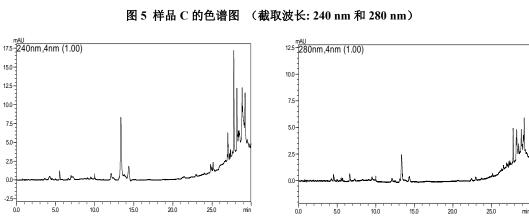


图 6 样品 D 的色谱图 (截取波长: 240 nm 和 280 nm)

经过对比保留时间和 UV 光谱图等信息,确认样品 D 中含有一种违法添加的禁用偶氮染料: 4,4'-二氨基二苯甲烷,样品溶液中的浓度为 17.2 mg/L。

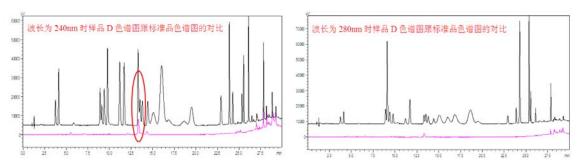


图 7 样品 D 的色谱图与标准品的色谱图对比

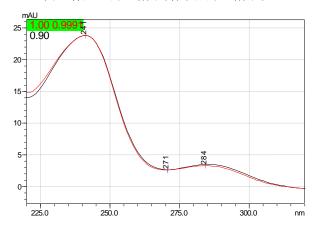


图 8 样品 D 中疑似禁用染料的光谱图与标准品的光谱图对比图

3.6 讨论

本文使用岛津 Nexera XR 液相色谱仪建立了一种针对纺织品中 24 种禁用偶氮染料的检测方法。该方法的标准曲线线性关系良好,重现性好,与国家标准 GB/T 17592-2006 相比,每个样品的分析时间缩短到原来的三分之一,结合二极管阵列检测器,能够快速准确的对纺织品中 24 种禁用偶氮染料进行定性定量分析。此外,该方法仅使用了甲醇和水作为流动相,方便直接将该方法转化为 LC-MS 联用方法,进一步改善该方法的灵敏度、选择性和定性能力。